A mixing-length formulation for the turbulent Prandtl number in wall-bounded flows with bed roughness and elevated scalar sources
نویسندگان
چکیده
Turbulent Prandtl number distributions are measured in a laboratory boundary layer flow with bed roughness, active blowing and sucking, and scalar injection near the bed. The distributions are significantly larger than unity, even at large distances from the wall, in apparent conflict with the Reynolds analogy. An analytical model is developed for the turbulent Prandtl number, formulated as the ratio of momentum and scalar mixing length distributions. The model is successful at predicting the measured turbulent Prandtl number behavior. Large deviations from unity are shown in this case to be consistent with measurable differences in the origins of the momentum and scalar mixing length distributions. Furthermore, these deviations are shown to be consistent with the Reynolds analogy when the definition of the turbulent Prandtl number is modified to include the effect of separate mixing length origin locations. The results indicate that the turbulent Prandtl number for flows over complex boundaries can be modeled based on simple knowledge of the geometric and kinematic nature of the momentum and scalar boundary conditions. © 2006 American Institute of Physics. DOI: 10.1063/1.2227005
منابع مشابه
On the turbulent Prandtl number in homogeneous stably stratified turbulence
In this paper, we derive a general relationship for the turbulent Prandtl number Pr t for homogeneous stably stratified turbulence from the turbulent kinetic energy and scalar variance equations. A formulation for the turbulent Prandtl number, Pr t , is developed in terms of a mixing length scale LM and an overturning length scale LE , the ratio of the mechanical (turbulent kinetic energy) deca...
متن کاملComparison of Turbulent Thermal Diffusivity and Scalar Variance Models
In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with availa...
متن کاملSPH modelling of depth‐limited turbulent open channel flows over rough boundaries
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-...
متن کاملA New Scalar Reynolds Stress Model For Non-Isothermal Wall Bounded Turbulent Flows
The present investigation concerns the development of advanced scalar turbulence modeling approaches and their application to the calculation of non-isothermal wall-bounded flow phenomena. A new scalar modeling technique based on scalar turbulent scales is proposed and implemented at a second-order modeling approach. Instead of the classical analogy concept between the mechanical and the scalar...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کامل